Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.05.09.539943

ABSTRACT

Somatic hypermutation (SHM) drives affinity maturation and continues over months in SARS-CoV-2 neutralizing antibodies. Yet, several potent SARS-CoV-2 antibodies carry no or only few mutations, leaving the question of how ongoing SHM affects neutralization. Here, we reverted variable region mutations of 92 antibodies and tested their impact on SARS-CoV-2 binding and neutralization. Reverting higher numbers of mutations correlated with decreasing antibody functionality. However, some antibodies, including the public clonotype VH1-58, remained unaffected for Wu01 activity. Moreover, while mutations were dispensable for Wu01-induced VH1-58 antibodies to neutralize Alpha, Beta, and Delta variants, they were critical to neutralize Omicron BA.1/BA.2. Notably, we exploited this knowledge to convert the clinical antibody tixagevimab into a BA.1/BA.2-neutralizer. These findings substantially broaden our understanding of SHM as a mechanism that not only improves antibody responses during affinity maturation, but also counteracts antigenic imprinting through antibody diversification and thus increases the chances of neutralizing viral escape variants.

2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.12.247940

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is the cellular receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Computational analysis of mammalian ACE2 orthologues suggests various residues at the interface with the viral receptor binding domain that could facilitate tighter interaction compared to the human-ACE2. Introducing several mutations to the human-ACE2 resulted with significantly augmented affinity to the viral spike complex. This modified human-ACE2 fused to an Fc portion of an antibody makes a potent immunoadhesin that effectively targets SARS-CoV-2.


Subject(s)
Severe Acute Respiratory Syndrome
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.12.146290

ABSTRACT

The SARS-CoV-2 pandemic has unprecedented implications for public health, social life, and world economy. Since approved drugs and vaccines are not available, new options for COVID-19 treatment and prevention are highly demanded. To identify SARS-CoV-2 neutralizing antibodies, we analysed the antibody response of 12 COVID-19 patients from 8 to 69 days post diagnosis. By screening 4,313 SARS-CoV-2-reactive B cells, we isolated 255 antibodies from different time points as early as 8 days post diagnosis. Among these, 28 potently neutralized authentic SARS-CoV-2 (IC100 as low as 0.04 g/ml), showing a broad spectrum of V genes and low levels of somatic mutations. Interestingly, potential precursors were identified in naive B cell repertoires from 48 healthy individuals that were sampled before the COVID-19 pandemic. Our results demonstrate that SARS-CoV-2 neutralizing antibodies are readily generated from a diverse pool of precursors, fostering the hope of rapid induction of a protective immune response upon vaccination.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL